投射镜的作用是把中间镜形成的二级放大像再放大投射到荧光屏上,从而形成终像。
超薄切片机有热膨胀式和机械进刀式两类,后者较常用,它是以微动螺旋和微动杠杆来提供微小进刀而切出切片,如Leica超薄切片机。
3★■■◆◆. 固定方法目前,用于生物样品超薄切片技术的主要固定方法是化学固定法■◆★◆★◆。采用戊二醛 (或戊二醛+多聚甲醛)固定l~3h后,经相应的缓冲液冲洗,再用1%锇酸后固定1~2h。
③在一些细胞组分之间以化学反应和物理反应建立交联◆■◆,以提供一个骨架来稳定各种细胞器的空间构型◆■★;
电子显微镜(electron microscopy,EM) 简称电镜■■,经过五十多年的发展已成为生物学、医学、化学、农林和材料科学等领域进行科学研究的重要工具,是人类认识自然,特别是研究机体微细结构的重要手段,电镜技术已成为上述各领域研究工作者应掌握的一项基本技能★■★★■■。电镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖★◆■。
1. 定位、修块定位、修块是指保留要进行电镜观察部分★★,把其余部分削去■◆■,以利进行超薄切片■★◆◆★。
2■■. 脱水的原则和方法生物样品中的水分占据着一定空间,急剧脱水会引起细胞收缩,必须采用◆★★“等级系列脱水法■★■”,即用逐级加大脱水剂的浓度逐步把水分置换出来◆◆。一般标本在30%、50%、70%◆★★★、80%、90%★◆★■、95%乙醇或丙酮停留5~10min■★■◆■,100%乙醇或丙酮3次,每次10~15min。
(3)中间镜和投射镜:中间镜的作用是把物镜形成的一次放大像或衍射花样投射到投射镜的物平面上,再由投射镜放大投射到荧光屏上而获得终像。
电镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电镜有很多类型,主要有透射电镜 (transmission electron microscope★★★,TEM) (简称透射电镜)和扫描电镜 (scanning electron microscope,SEM) (简称扫描电镜)两大类。本文仅讨论在生物医学领域使用广泛的透射电镜和扫描电镜。
与光镜相比电镜用电子束代替了可见光,用电磁透镜代替了光学透镜并使用荧光屏将肉眼不可见电子束成像。电子与物质相互作用会产生透射电子★★、弹性散射电子、能量损失电子、二次电子、背反射电子◆◆■、吸收电子、X射线■★、俄歇电子、阴极发光和电动力等等。
(3)培养细胞的固定:如所固定材料为微生物、单细胞原生动物、细胞提取物或组织培养的细胞,则应先离心倒去上面的培养液 (或上清液),然后才按常规方法进行双重固定■◆■■★。戊二醛固定时间为15~30min,锇酸固定时间为15~40min★■■。
透射电镜和光学显微镜最基本的原理是相同的◆◆◆◆,显微放大过程基本相似,电镜的光路和部件术语基本一样。不同的是,电镜的照明源不是可见光而是电子束;透镜也不是玻璃而是轴对称的电场或磁场,电镜的总体结构、成像原理、操作方式等与光学显微镜有着本质上的区别。
渗透和包埋的目的是取代活组织中的水分以及支持整个结构,以便标本有特定的机械性利于切片。
分辨本领是指能够分辨物体上两点之间的最小距离。光学显微镜与电镜的分辨率相差达1000倍■◆◆★,因为光镜的分辨本领受到衍射效应的限制。当光线从一点出发透过显微镜时★■◆,所成的像不再是一点而是一个周围带有阴影的光斑◆★◆◆★。如果物体上两个质点靠得很近■■,所成的像就可能分辨不清。也就是说,光的波动性给光学显微镜规定了一个分辨本领的限制■■★★★。光镜的分辨本领最终只能达到约为照明波长的0◆◆.4倍■■◆★。
④能保存酶的活性以供电镜细胞化学研究。目前尚未找到一种能满足上述全部功能的理想固定剂,较理想和常用的固定剂有四氧化锇、醛类◆■■、高锰酸钾等。
(1)浸泡固定■◆★★:适用于一些能允许在短时间内停止供血而仍保持其功能和结构的器官或组织,以及一些病理检查的样品■■◆◆◆。其方法是经解剖 (或手术)尽快从机体中取出所需组织,并按取材要求■◆◆■◆■,把组织切成小块◆■■◆★■,放入小瓶子内作常规双重固定。
1. 常用脱水剂 常用脱水剂有乙醇◆★、丙酮和过渡液环氧丙烷等★◆◆◆■■。其中,因乙醇引起细胞中脂类物质的抽提较丙酮少,且不使组织材料变硬、变脆,为最常用脱水剂■◆◆◆■。但乙醇不易和用于包埋的环氧树脂相混溶,为此在转入包埋剂前,要用★◆◆“中间脱水剂◆◆■■”——环氧丙烷过渡,它比乙醇和丙酮易与环氧树脂混溶,且挥发快,利于浸透和包埋◆◆★★■◆。
玻璃刀经检查后的刀还须在刀上作一小水槽,以便在切片时让切下来的超薄切片漂浮在液面上。为防止漏水,边沿须用石蜡或指甲油焊封。在焊接时★■,应注意刀刃不要粘上石蜡或其他的焊封剂,以免损伤刀刃。
(1)染色的作用:所谓电子染色是利用某些金属盐(如铅、铀、锇等)能与细胞的某些结构和成分结合,以增加其电子散射能力,进而达到提高反差的一种方法★◆■■★■,不同结构成分上吸附有不同数量重金属原子,结合重金属原子较多的区域(即结构致密★◆■★◆■、原子序数高的部分)具有较强的电子散射能力■★■◆,在电镜下呈现为电子致密的黑色;结合重金属原子较少的区域则为浅黑色,灰黑色,没有结合重金属的区域是电子透明的区域★■★◆■,因此,经过电子染色处理可提高样品反差,增加图像清晰度。
1◆◆◆. 常用包埋剂及配方包埋剂种类颇多,目前普遍使用的是环氧树脂。为改善包埋块的切割性能■◆◆◆■,有时在环氧树脂包埋剂配方中再加一些增塑剂,以调节包埋块的韧性。
(2)固定液的渗透压★◆★:固定液的渗透压须调节到接近组织◆★★◆、细胞的生理值◆★◆。固定液的渗透压是通过改变缓冲液的浓度或者通过增加钠◆◆■◆、钙和镁等电解质或葡萄糖和蔗糖等非电解质来调节的。
(2)戊二醛(glutaraldehyde)分子式为C5H8O2★◆。市售的戊二醛通常是25%或50%的水溶液◆■◆◆,其pH为4.0~5■■◆★.0★■★◆, 并保存在低温处, 且不宜存放时间过长。
3. 所用固定液及容器须预冷,以降低离体细胞内水解酶的活性■★◆★■◆,尽可能减少细胞自溶★◆■◆■。
(3)高锰酸钾是一种强的氧化剂★■◆◆■■,对磷脂蛋白类有特别良好的固定作用★◆■。可用于保护细胞的膜相结构,如细胞膜、内质网等。尤其是对神经髓质效果更为显著★★★,但对于胞内的颗粒性或纤维状结构几乎不能固定。常用于植物叶绿体结构及神经纤维结构的研究。
环氧树脂包埋剂对细胞微细结构有较好的保存性能,聚合后体积收缩率较小,为2%~5%,而且在真空中能经受较长时间的轰击。但它操作不大方便,反差较弱。
电子枪是电镜的照明源,由灯丝阴极、栅极 (或称韦氏圆筒)和加速阳极组成(图19-2)■◆◆■。
(1)四氧化锇 (Osmium tetroxide)俗称锇酸,为一种强的氧化剂,呈浅黄色结晶,其分子式OSO4,熔点41℃,沸点131℃,在水中的溶解度为7★■◆★◆.24%(25℃) 。其水溶液为中性,有极大的毒性■◆■。
取材是超薄切片技术的关键环节■■■★★◆。由于生物组织离体后,细胞将会立即释放出各种水解酶引起细胞自溶,使细饱内部微细结构发生变化★◆■◆★◆。因此,为尽可能避免产生人工假像,取材时有以下要求:
(2)物镜:其作用是形成样品的第一级放大像和通过调节物镜线圈的激励电流,相应地改变物镜的焦距从而对像进行聚焦。物镜是电镜的最关键部分★★■★◆★,由它获得第一幅具有一定分辨本领的电子放大像■◆◆。物镜中任何缺陷都将被成像系统其他透镜进一步放大★◆。因此,电镜的分辨本领主要取决于物镜的分辨本领。
脱水是指用适当的有机溶剂取代组织细胞中的游离水■◆■◆★★,因水分的存在会使组织结构在电镜高真空状态下急剧收缩而遭破坏,另外包埋剂是非水溶性的,细胞中的游离水会影响包埋剂的浸透,因此,脱水是一个很重要的步骤◆◆■。
透射电镜的成像是由一定强度的电子束透过标本而成像。由于电子射线的穿透能力比较低,电镜又具有很高的分辨率和放大率,因此◆★★★◆, 电镜标本需要厚度在0.03~0■◆★.05μm的超薄切片,以获得高分辨的超微结构图像。
(4)固定时的温度 理论上,低温能降低酶的活性★◆★★,减少细胞自溶和胞内物质的抽提★★■■,因此,大部分样品宜在0℃~4℃下固定。
(3)染色的方式:由于铀和铅具有不同的染色特征,所以目前切片普遍都采用双重染色◆■■。即先用醋酸铀染色后,再用柠檬酸铅染色★■◆★,相互补充,从而获得较佳的染色效果。
电子光学系统即电镜的镜体,基本上是一个电子透镜系统■◆★★■★,一端是电子源★■★◆,另一端是观察和记录系统,中间是安装样品的装置(图19-1)。
放大倍数是指物体经过仪器放大后的像与物的大小之比。放大了的像还可多次放大★■■■◆■,但到一定限度后继续放大时便不能增加细节,这是分辨本领的限制所致。不能增加图像细节的放大倍数称为空放大,而与分辨本领相应的最高放大倍数称为有效放大倍数■★★◆,为眼的分辨本领与仪器的分辨本领之比。
3★★◆. 载网和支持膜制备超薄切片须置于一种载网上才能进行观察。载网一般采用很薄的铜片■■◆★◆★,此外★■★★■,还有镍网★◆、银、钼、不锈钢、尼龙等材料制成的载网■■★■◆◆。
1)醋酸铀:也称醋酸双氧铀,是广泛使用的染色剂,它以提高核酸■★◆、蛋白质和结缔组织纤维的反差为主,对膜染色效果较差◆★★★。
用100%乙醇或丙酮脱水时,必须先用无水硫酸铜或用无水氧化钙吸收脱水剂中的水分,以保证组织细胞充分彻底脱水。另外脱水时间不可过长,以尽量减少细胞成分的抽提和丢失。
②稳定细胞物质成分,如核酸、白,糖类和脂类★★★◆★■,使之发生交联,减少或避免抽提作用,以保存组织成分;
磁透镜的聚焦原理:电子在进入磁场后受到磁场(洛伦兹力)作用◆◆■■■◆,使电子束产生两种运动——旋转和折射◆■★,而电子在磁场中的旋转与折射是各自进行的。因此★★★★★,在讨论磁透镜的聚焦作用时就可以暂不考虑电子的旋转,这样,电子在磁透镜的折射与光通过玻璃凸透镜的聚焦作用相似了。正如玻璃凸透镜可用于放大成像一样。磁透镜也能用于放大成像,而且还可以借用几何光学中的光线作图法与术语,如用焦点、焦距■■、物距、像距等概念来描述电子在磁透镜的运动轨迹。
在荧光下面是照相暗盒■■◆■■,它和电磁快门■◆、曝光表组成像的记录系统■◆■◆◆,用于把终像拍摄记录下来。现代透射电镜一般还配备有CCD相机◆★★,实现数字化成像,结合相关的软件还可以进行图像的分析处理■◆★★★★。
2.成像系统包括样品室、物镜、中间镜和投射镜(或两个中间镜或两个投射镜构成4~5个透镜系统)。
2)柠檬酸铅■■◆★★:目前使用最广泛的电镜染色剂,密度大◆◆■,对各种组织结构都有广泛的亲和作用,尤以提高细胞膜系统及脂类物质的反差为好,对不能被锇酸染色的糖原更具有染色作用■◆★◆★◆。
对于试管或培养瓶培养的单层细胞◆★★◆◆,在倾去培养液后■◆,即加入前固定液,并轻刮下细胞,用2000r/min离心15~20min,使细胞成团。然后倾去上清液,再缓慢加入新鲜的前固定液,以免将细胞团冲散,并继续进行双重固定■★◆。
超薄切片的最大面积为0.5mm×0■◆★■◆.5mm左右,要切出较理想的超薄切片,不仅超薄切片机质量好,还要有渗透◆■■■■★、包埋好的包埋块,以及要有好的切片刀和操作者技术熟练等。其步骤是◆◆:
(1)固定液的浓度★◆:固定液浓度要适宜◆★★◆◆。一般戊二醛常用浓度为1%~4%,锇酸为1%~2%◆★★◆。
(1)样品室★◆■◆■:室内有样品台■◆◆◆,电镜的样品载于载网上■★,载网放在样品架(或称样品筒)上。
超薄切片制作过程包括取材、固定◆★◆■★、脱水、渗透、包埋、聚合、切片和染色等几个环节。
2. 渗透与包埋步骤样品在完全脱水后■★,即可进入渗透。第一步是将样品置于100%脱水剂及等量包埋剂的混合液中(室温下30min或数h);第二步是将样品置于纯包埋剂中(室温6h或过夜),然后可行包埋: 将渗透后的样品挑入已装有包埋剂的多孔橡胶模板中★■★,将包埋剂灌满,放入标签,然后根据包埋剂聚合时所需的温度及时间聚合■◆◆★,制成包埋块■★■★。
1. 照明系统由电子枪和聚光镜组成。其作用是为成像系统提供一个亮度高★■◆★■、尺寸小◆◆■■◆■、高稳定的照明电子束。
(2)血管灌注固定◆■◆★:适用于取材较复杂或对缺氧较敏感的器官或组织◆■■◆,须采用血管灌注固定。可根据动物的大小选用全身灌注或局部灌注的方式。
室内相对湿度要在50%以下。根据标本本身结构致密程度或特殊需要,可适当延长或缩短脱水时间,选择合适的起始浓度或增加脱水系列的等级◆★。
为了提高显微镜的分辨本领,就需要寻找波长更短的光波作照明■■■。1924年法国学者德.布罗依(De.Broglie)等人创立了波动力学◆★★◆◆◆,提出了物质波的概念,指出高速运动的粒子不仅具有粒子性,而且具有波动性★◆。这个假设不久就为电子衍射实验所证实。衍射是波动的特性,高速运动的电子能发生衍射,证明它是一种波■■。它具有波动所具有的共同特征量——波长◆■★◆、频率◆■★◆、振幅、相位等,并且服从于波动的规律。
聚光镜的作用是将来自电子枪的电子会聚到样品上■■★,通过它来控制照明电子束斑大小,电流密度和孔径角★■◆★◆。
(3)固定液的pH值■◆★■★■:固定液pH值须接近所要固定组织的pH值★★。由于大部分动物组织的平均pH值约7.4, 因此■■■■★,电镜固定液的pH值都选用中性 (7.2~7.4)。